Total submissions: 7
Submitter | RCV | SCV | Clinical significance | Condition | Last evaluated | Review status | Method | Comment |
---|---|---|---|---|---|---|---|---|
LDLR- |
RCV000238119 | SCV000295029 | likely pathogenic | Hypercholesterolemia, familial, 1 | 2016-03-25 | criteria provided, single submitter | literature only | |
Centre de Génétique Moléculaire et Chromosomique, |
RCV000238119 | SCV000503249 | likely pathogenic | Hypercholesterolemia, familial, 1 | 2016-12-16 | criteria provided, single submitter | clinical testing | subject mutated among 2600 FH index cases screened = 1 / Software predictions: Conflicting |
Iberoamerican FH Network | RCV000238119 | SCV000748043 | likely pathogenic | Hypercholesterolemia, familial, 1 | 2016-03-01 | criteria provided, single submitter | research | |
Broad Center for Mendelian Genomics, |
RCV001249084 | SCV001423044 | uncertain significance | Familial hypercholesterolemia | 2020-01-22 | criteria provided, single submitter | curation | The p.Cys296Tyr variant in LDLR has been reported in 3 individuals with familial hypercholesterolemia (PMID: 23375686, 21722902, 20809525), and was absent from large population studies. This variant has also been reported in ClinVar as likely pathogenic (Variation ID: rs879254707). Computational prediction tools and conservation analyses suggest that this variant may impact the protein, though this information is not predictive enough to determine pathogenicity. In summary, while there is some suspicion for a pathogenic role, the clinical significance of this variant is uncertain. ACMG/AMP Criteria applied: PM2, PP3, PS4_supporting (Richards 2015). |
Labcorp Genetics |
RCV001249084 | SCV001584409 | pathogenic | Familial hypercholesterolemia | 2023-06-27 | criteria provided, single submitter | clinical testing | This variant is not present in population databases (gnomAD no frequency). For these reasons, this variant has been classified as Pathogenic. This variant disrupts the p.Cys296 amino acid residue in LDLR. Other variant(s) that disrupt this residue have been observed in individuals with LDLR-related conditions (PMID: 23375686), which suggests that this may be a clinically significant amino acid residue. This variant affects a cysteine residue located within an LDLRA or epidermal-growth-factor (EGF)-like domains of the LDLR protein. Cysteine residues in these domains have been shown to be involved in the formation of disulfide bridges, which are critical for protein structure and stability (PMID: 7548065, 7603991, 7979249). In addition, missense substitutions within the LDLRA and EGF-like domains affecting cysteine residues are overrepresented among patients with hypercholesterolemia (PMID: 18325082). Advanced modeling of protein sequence and biophysical properties (such as structural, functional, and spatial information, amino acid conservation, physicochemical variation, residue mobility, and thermodynamic stability) performed at Invitae indicates that this missense variant is expected to disrupt LDLR protein function. ClinVar contains an entry for this variant (Variation ID: 251502). This missense change has been observed in individuals with autosomal dominant and autosomal recessive familial hypercholesterolemia (PMID: 20809525, 21722902, 23375686, 24014831). This sequence change replaces cysteine, which is neutral and slightly polar, with tyrosine, which is neutral and polar, at codon 296 of the LDLR protein (p.Cys296Tyr). |
Ambry Genetics | RCV002374399 | SCV002685505 | likely pathogenic | Cardiovascular phenotype | 2018-01-15 | criteria provided, single submitter | clinical testing | The p.C296Y variant (also known as c.887G>A), located in coding exon 6 of the LDLR gene, results from a G to A substitution at nucleotide position 887. The cysteine at codon 296 is replaced by tyrosine, an amino acid with highly dissimilar properties. This alteration has been reported in individuals with familial hypercholeterolemia (FH) (Marduel M et al. Hum. Mutat., 2010 Nov;31:E1811-24; Vaca G et al. Atherosclerosis, 2011 Oct;218:391-6; Bertolini S et al. Atherosclerosis, 2013 Apr;227:342-8). Pathogenic LDLR mutations that result in the substitution or generation of cysteine residues within the cysteine-rich LDLR class A repeats and EGF-like domains are common in FH (Villéger L. Hum Mutat. 2002;20(2):81-7). In addition, internal structural analysis indicates this alteration eliminates a disulfide bond critical for the structural integrity of LDLR class A repeat 7 (Rudenko G et al. Science. 2002 Dec;298(5602):2353-8). Futhermore, an alteration affecting this amino acid (p.C296S) has been reported in association with FH (Bertolini S et al. Atherosclerosis, 2013 Apr;227:342-8). This amino acid position is highly conserved in available vertebrate species. In addition, this alteration is predicted to be deleterious by in silico analysis. Based on the majority of available evidence to date, this variant is likely to be pathogenic. |
Laboratorium voor Moleculaire Diagnostiek Experimentele Vasculaire Geneeskunde, |
RCV000238119 | SCV000606258 | pathogenic | Hypercholesterolemia, familial, 1 | no assertion criteria provided | research |