Total submissions: 13
Submitter | RCV | SCV | Clinical significance | Condition | Last evaluated | Review status | Method | Comment |
---|---|---|---|---|---|---|---|---|
Laboratory for Molecular Medicine, |
RCV000155838 | SCV000205549 | uncertain significance | not specified | 2013-10-10 | criteria provided, single submitter | clinical testing | The Pro7132Ser variant in TTN has not been previously reported in individuals wi th cardiomyopathy, but has been identified in 1/8208 European American chromosom es tested by the NHLBI Exome Sequencing Project (http://evs.gs.washington.edu/EV S/). Computational analyses (biochemical amino acid properties, conservation, Al ignGVGD, PolyPhen2, and SIFT) do not provide strong support for or against an im pact to the protein. Additional information is needed to fully assess the clinic al significance of this variant. |
Eurofins Ntd Llc |
RCV000725209 | SCV000335006 | uncertain significance | not provided | 2017-11-27 | criteria provided, single submitter | clinical testing | |
Labcorp Genetics |
RCV000526343 | SCV000642867 | uncertain significance | Dilated cardiomyopathy 1G; Autosomal recessive limb-girdle muscular dystrophy type 2J | 2017-07-27 | criteria provided, single submitter | clinical testing | |
ARUP Laboratories, |
RCV000725209 | SCV001157832 | uncertain significance | not provided | 2020-02-18 | criteria provided, single submitter | clinical testing | The TTN c.25126C>T; p.Pro8376Ser variant (rs375209098; ClinVar Variation ID: 179054) is rare in the general population (<1% allele frequency in the Genome Aggregation Database) and has not been reported in the medical literature in association with dilated cardiomyopathy (DCM) or other TTN-related disease. The clinical relevance of rare missense variants in this gene, which are identified on average once per individual sequenced in affected populations (Herman 2012), is not well understood. Yet, evidence suggests that the vast majority of such missense variants do not contribute to the clinical outcome of DCM (Begay 2015). Thus, the clinical significance of the p.Pro8376Ser variant cannot be determined with certainty. References: Begay RL et al. Role of Titin Missense Variants in Dilated Cardiomyopathy. J Am Heart Assoc. 2015 Nov 13;4(11). Herman DS et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012 Feb 16;366(7):619-28. Linke WA and Hamdani N. Gigantic business: titin properties and function through thick and thin. Circ Res 2014; 114(6): 1052-1068. |
Illumina Laboratory Services, |
RCV001132967 | SCV001292651 | uncertain significance | Early-onset myopathy with fatal cardiomyopathy | 2018-01-12 | criteria provided, single submitter | clinical testing | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. |
Illumina Laboratory Services, |
RCV001132968 | SCV001292652 | benign | Tibial muscular dystrophy | 2018-01-12 | criteria provided, single submitter | clinical testing | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. |
Illumina Laboratory Services, |
RCV001132969 | SCV001292653 | uncertain significance | Autosomal recessive limb-girdle muscular dystrophy type 2J | 2018-01-12 | criteria provided, single submitter | clinical testing | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. |
Illumina Laboratory Services, |
RCV001132970 | SCV001292654 | benign | Myopathy, myofibrillar, 9, with early respiratory failure | 2018-01-12 | criteria provided, single submitter | clinical testing | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score and internal cut-off values, a variant classified as benign is not then subjected to further curation. The score for this variant resulted in a classification of benign for this disease. |
Illumina Laboratory Services, |
RCV001136399 | SCV001296234 | uncertain significance | Dilated cardiomyopathy 1G | 2018-01-12 | criteria provided, single submitter | clinical testing | This variant was observed in the ICSL laboratory as part of a predisposition screen in an ostensibly healthy population. It had not been previously curated by ICSL or reported in the Human Gene Mutation Database (HGMD: prior to June 1st, 2018), and was therefore a candidate for classification through an automated scoring system. Utilizing variant allele frequency, disease prevalence and penetrance estimates, and inheritance mode, an automated score was calculated to assess if this variant is too frequent to cause the disease. Based on the score, this variant could not be ruled out of causing disease and therefore its association with disease required further investigation. A literature search was performed for the gene, cDNA change, and amino acid change (if applicable). No publications were found based on this search. This variant was therefore classified as a variant of unknown significance for this disease. |
Gene |
RCV000725209 | SCV001772205 | likely benign | not provided | 2019-06-21 | criteria provided, single submitter | clinical testing | |
Revvity Omics, |
RCV000725209 | SCV003821035 | uncertain significance | not provided | 2023-01-04 | criteria provided, single submitter | clinical testing | |
CHEO Genetics Diagnostic Laboratory, |
RCV003149951 | SCV003838651 | uncertain significance | Cardiomyopathy | 2021-07-14 | criteria provided, single submitter | clinical testing | |
Practice for Gait Abnormalities, |
RCV002221205 | SCV002498708 | likely pathogenic | Tip-toe gait | flagged submission | clinical testing | Myopathy refers to diseases that affect skeletal Muscles. These diseases attack muscle fibers, making muscles weak. Inherited myopathies are often caused by inheriting an abnormal gene mutation from a parent that causes the disease. Symptoms of congenital myopathies usually start at birth or in early childhood, but may not appear until the teen years or even later in adulthood. Congenital myopathies are somewhat unique compared with other inherited myopathies, as weakness typically affects all muscles and is often not progressive. Symptoms are: Muscle weakness, most commonly of upper arms and shoulders and thighs, muscle cramps, stiffness and spasms, fatigue with exertion and lack of energy. Our patients all walk on tiptoe, so they show similar symptoms. When we genetically test them with our toe walking panel, we find that around 90 per cent of them have a genetic variant that explains their toe walking. These can be assigned, for example, to the area of myopathies (such as variants of the COL6A3 gene), the area of hereditary neuropathies (such as variants of the KMT2C gene) or the area of metabolic diseases (such as variants of the PYGM gene). In a smaller group of patients with almost identical symptoms, no abnormality is found in the genes of our panel, but spastic paraplegia can be detected. In another small group of our toe walkers, no abnormalities can be detected in the genes analysed in our toe walking panel, nor do they suffer from spastic paraplegia, as is also the case with healthy children. In contrast to these, however, they show a tiptoe gait. These patients suffer from infantile cerebral palsy, in which toe walking can also be observed. |