Total submissions: 3
Submitter | RCV | SCV | Clinical significance | Condition | Last evaluated | Review status | Method | Comment |
---|---|---|---|---|---|---|---|---|
Gene |
RCV001754507 | SCV001985948 | uncertain significance | not provided | 2022-10-03 | criteria provided, single submitter | clinical testing | Not observed at significant frequency in large population cohorts (gnomAD); In silico analysis supports that this missense variant does not alter protein structure/function; Has not been previously published as pathogenic or benign to our knowledge |
Labcorp Genetics |
RCV002032815 | SCV002169774 | uncertain significance | Mitochondrial hypertrophic cardiomyopathy with lactic acidosis due to MTO1 deficiency | 2022-06-20 | criteria provided, single submitter | clinical testing | This sequence change replaces glutamic acid, which is acidic and polar, with glutamine, which is neutral and polar, at codon 691 of the MTO1 protein (p.Glu691Gln). This variant is present in population databases (rs748394297, gnomAD 0.002%). This variant has not been reported in the literature in individuals affected with MTO1-related conditions. ClinVar contains an entry for this variant (Variation ID: 1304939). Algorithms developed to predict the effect of missense changes on protein structure and function output the following: SIFT: "Tolerated"; PolyPhen-2: "Benign"; Align-GVGD: "Class C0". The glutamine amino acid residue is found in multiple mammalian species, which suggests that this missense change does not adversely affect protein function. In summary, the available evidence is currently insufficient to determine the role of this variant in disease. Therefore, it has been classified as a Variant of Uncertain Significance. |
Ambry Genetics | RCV004040102 | SCV005007994 | likely benign | Inborn genetic diseases | 2024-01-22 | criteria provided, single submitter | clinical testing | This alteration is classified as likely benign based on a combination of the following: seen in unaffected individuals, population frequency, intact protein function, lack of segregation with disease, co-occurrence, RNA analysis, in silico models, amino acid conservation, lack of disease association in case-control studies, and/or the mechanism of disease or impacted region is inconsistent with a known cause of pathogenicity. |