ClinVar Miner

Submissions for variant NM_032634.4(PIGO):c.2627G>A (p.Gly876Glu)

dbSNP: rs1057524330
Minimum review status: Collection method:
Minimum conflict level:
ClinVar version:
Total submissions: 2
Download table as spreadsheet
Submitter RCV SCV Clinical significance Condition Last evaluated Review status Method Comment
GeneDx RCV000438771 SCV000535223 uncertain significance not provided 2016-12-23 criteria provided, single submitter clinical testing A variant of uncertain significance has been identified in the PIGO gene. The G876E variant has not been published as a pathogenic variant, nor has it been reported as a benign variant to our knowledge. The G876E variant is not observed in large population cohorts (Lek et al., 2016; 1000 Genomes Consortium et al., 2015; Exome Variant Server). The G876E variant is a non-conservative amino acid substitution, which is likely to impact secondary protein structure as these residues differ in polarity, charge, size and/or other properties. This substitution occurs at a position that is conserved in mammals and in silico analysis predicts this variant is probably damaging to the protein structure/function. However, missense variants in nearby residues have not been reported in Human Gene Mutation Database in association with PIGO-related disorders (Stenson et al., 2014). Therefore, based on the currently available information, it is unclear whether this variant is a pathogenic variant or a rare benign variant.
Invitae RCV000540479 SCV000652690 uncertain significance Hyperphosphatasia with intellectual disability syndrome 2 2021-04-10 criteria provided, single submitter clinical testing This sequence change replaces glycine with glutamic acid at codon 876 of the PIGO protein (p.Gly876Glu). The glycine residue is moderately conserved and there is a moderate physicochemical difference between glycine and glutamic acid. This variant is not present in population databases (ExAC no frequency) and has not been reported in the literature in individuals with a PIGO-related disease. In summary, this variant is a novel missense change with uncertain impact on protein function. It has been classified as a Variant of Uncertain Significance. Algorithms developed to predict the effect of missense changes on protein structure and function do not agree on the potential impact of this missense change (SIFT: "Tolerated"; PolyPhen-2: "Possibly Damaging"; Align-GVGD: "Class C0").

The information on this website is not intended for direct diagnostic use or medical decision-making without review by a genetics professional. Individuals should not change their health behavior solely on the basis of information contained on this website. Neither the University of Utah nor the National Institutes of Health independently verfies the submitted information. If you have questions about the information contained on this website, please see a health care professional.